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Abstract 

Pseudo Bayes probability estimates are weighted averages of raw and modeled probabilities; 

these estimates have been studied primarily in nonpsychometric contexts. The purpose of this 

study was to evaluate pseudo Bayes probability estimates as applied to the estimation of 

psychometric test score distributions and chained equipercentile equating functions. Population 

test score distributions were created from actual test data and random samples of varied size 

were drawn from the populations. Pseudo Bayes estimation was applied to the random samples, 

using ranges of loglinear models and weights in the pseudo Bayes estimates’ weighted averages 

of the raw and modeled test score probabilities. Equipercentile equating functions based on the 

pseudo Bayes estimates were also evaluated. Results indicated that the pseudo Bayes estimates 

have the potential to improve estimation accuracy for test score distributions and chained 

equipercentile equating functions in situations where loglinear modeling is not ideal and where 

finding the population loglinear model selection is not likely. 
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Weighted averages of raw and modeled probabilities (i.e., pseudo Bayes 

probability estimates) have been rigorously studied and their use has been encouraged for 

the estimation of the cells of multiway frequency tables (Agresti, 1990; Bishop, Fienberg, 

& Holland, 1975; Fienberg & Holland, 1973). This work usually shows that pseudo 

Bayes probabilities are better estimates of population probabilities than raw probabilities. 

The pseudo Bayes probabilities may also be preferable to modeled probabilities, as in 

situations where model selection is difficult due to complex structures in the data. 

Presumably, pseudo Bayes probability estimates would be useful for the frequency tables 

that are commonly dealt with in psychometric contexts, such as the estimation of test 

score distributions and equipercentile equating functions. To date, the use of pseudo 

Bayes probability estimation for psychometric applications has been considered only in 

limited terms (described below).  

The purpose of this study is to assess the viability of pseudo Bayes probability 

estimates for test score distributions and the chained equipercentile equating functions 

computed from these test score distributions. First, the frequency tables of test score 

distributions are described along with the approaches commonly used to estimate these 

frequency tables. Next, the proposals of pseudo Bayes probability estimates are described 

in terms of their potential to broaden and possibly improve on the more commonly used 

psychometric approaches. Finally, applications of pseudo Bayes methods to the 

estimation of test score distributions and chained equipercentile equating functions are 

evaluated in several simulations. Recommendations for practice are made based on the 

simulation results. 

Psychometric Test Score Distributions and Common Estimation Approaches 

One- and two-way frequency tables naturally arise with test score distributions. For 

example, the univariate distribution of a single test, X, with scores ranging from xj = x1 to xJ 

is contained in a one-way table of the raw frequencies, nj. The bivariate distribution of two 

tests, X and A, with possible scores xj and ak is contained in a two-way table of the raw 

frequencies, njk. Several psychometric analyses work directly with the test scores’ raw 

probabilities, j
j

n
r

N
=  and jk

jk

n
r

N
= . Testing programs may report the percentiles or norms 

corresponding to a test’s scores (Kolen, 1991). Testing programs may also solve for test 
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scores with percentiles that match those of other test forms’ scores, a process known as 

equipercentile equating (Kolen & Brennan, 2004). One difficulty encountered in the 

estimation of percentiles and equipercentile equating functions is that test scores’ raw 

probabilities, rj and rjk, can exhibit considerable sampling instability. A related difficulty is 

that many of the raw sample probabilities can be zero when their population counterparts, 

pj and pjk, are assumed to be greater than zero.  

Two common psychometric practices for addressing rj and rjk values that are 

unstable and/or implausibly zero are (a) averaging small constants with all test scores’ 

raw probabilities (Hanson, 1990; Kolen & Brennan, 2004), or (b) employing a loglinear 

modeling strategy by modeling the log of rj or rjk as a polynomial function of the test 

scores (see this paper’s Method section and Holland & Thayer, 1987, 2000). Both the 

small constants and the loglinear modeling strategies can produce versions of rj and rjk, sj 

and sjk, that are smooth and stable with values that are always greater than zero. However, 

both strategies can also produce biased estimates of the population values, pj and pjk. The 

use of small constants implies uniform and independent distributions which are usually 

not realistic for psychometric data. Loglinear models allow for more flexibility than the 

small constants strategy, in that they allow for possible parameterizations that range from 

very simple (e.g., uniform and independence models) to highly parameterized models that 

capture complex structures observed in test data (Hanson, 1996; Holland & Thayer, 

2000). As with the use of small constants, though, loglinear models can produce biased 

estimates due to the complexities and inaccuracies of selection processes for the models’ 

parameterizations (Agresti, 1990; Bishop et al., 1975; Hanson, 1990; Holland & Thayer, 

2000; Moses & Holland, 2008, 2009b; von Davier, Holland, & Thayer, 2004).  

Pseudo Bayes Estimates for Multiway Frequency Tables 

Pseudo Bayes probability estimates may be useful for the estimation of frequency 

tables encountered with psychometric test data. Pseudo Bayes estimates can incorporate 

the smooth and stable features of the small constants and loglinear modeling strategies 

while reducing these strategies’ potential for biased estimation. Pseudo Bayes estimates 

are weighted averages of raw (r) and modeled (s) probability estimates, 

(1 ) ,   0 1PB wr w s w= + − ≤ ≤ . (1) 
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The Bayesian interpretation of the pseudo Bayes estimates in Equation 1 results from 

making standard multinomial assumptions for r and other assumptions for the prior 

distribution of population probability p, so that Equation 1 is said to estimate the 

posterior mean of p given n (Agresti, 1990; Bishop et al., 1975; Fienberg & Holland, 

1973). The pseudo aspect of the pseudo Bayes estimates pertains to data-dependent 

choices of w and s  in Equation 1. Previous work has shown that the w that minimizes 

mean squared error between the pseudo Bayes estimates and the p’s is  

( )

2

2

1
Nw

r
N

r s

=
⎛ ⎞−
⎜ ⎟+
⎜ ⎟−⎝ ⎠

∑
∑  (2) 

(Fienberg & Holland). Analytic and simulation research has shown that the pseudo Bayes 

estimates can be better estimates of population probabilities than raw probabilities and 

modeled probabilities (Agresti; Bishop et al.; Fienberg & Holland).  

This Study 

The purpose of this study is to evaluate applications of pseudo Bayes estimates 

for the estimation of test score distributions and equipercentile equating functions. These 

applications extend previous considerations of pseudo Bayes estimation and of the 

smoothing methods used in psychometric practice. In earlier pseudo Bayes proposals 

(Agresti, 1990; Bishop et al., 1975; Fienberg & Holland, 1973), population probabilities 

have been primarily estimated by using s  values from uniform and independence models 

when creating the pseudo Bayes estimates. These s  values are probably unrealistic for 

the one- and two-way tables encountered in test data, where the distributions can be 

complex and joint distributions cannot be assumed to be uniformly and independently 

distributed. The current study expands on early pseudo Bayes studies by considering how 

s  values from loglinear models that fit the observed data to varying degrees affect the 

accuracy of the pseudo Bayes estimates. 

In terms of psychometric practice and equipercentile equating, the choices considered for test 

score distribution estimation have primarily included (a) the raw probabilities, (b) the raw 

probabilities averaged with small constants, and (c) the smoothed probabilities based on some 
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loglinear model (Hanson, 1990; Hanson, Zeng, & Colton, 1994; Moses & Holland, 2007). When 

these choices are interpreted as relatively limited applications of pseudo Bayes estimates (i.e., 

Equation 1 with 0w = , and s  following a uniform distribution, or with 1w = ), it becomes apparent 

that these choices are potentially improvable though the use of different w  values. For example, a 

study by Moses and Holland (2009a) showed that pseudo Bayes estimates with w  values of 0.5 

improved the accuracy of equipercentile equating functions. This study broadens the Moses and 

Holland investigation and prior smoothing investigations by considering pseudo Bayes estimates 

with w  values ranging between 0 and 1 along with a range of loglinear models for s .  

Method 

Pseudo Bayes estimates for test score distributions were studied in several 

simulations. Population distributions were obtained by fitting loglinear models to four 

large sample psychometric test score distributions. Random samples were then drawn 

from each of these population distributions and the pseudo Bayes estimation described in 

Equation 1 was used to estimate the population distributions from each random sample. 

Equipercentile equating functions were computed in the random samples based on the 

test scores probabilities produced from the pseudo Bayes estimates. Different 

applications of pseudo Bayes estimation were considered by varying the accuracy of the 

loglinear model used for s  and also varying the choice of w . The accuracies of the 

probability estimates and the equipercentile equating functions based on the pseudo 

Bayes applications were assessed by comparing the sample estimates from each pseudo 

Bayes application to the corresponding values in the population distribution. The 

conditions of the simulation are described in more detail below. 

Four Population Test Score Distributions and Their Population Loglinear Models 

Four bivariate test score distributions were obtained from the operational data of a 

large-scale testing program. These bivariate distributions comprised two nonequivalent 

groups with anchor test equating situations where in each situation a new test form (X) 

was to be equated to an old test form (Y) and an anchor test (A) internal to X and Y was 

used to account for the nonequivalence of the examinee groups taking X and Y. The (X,A) 

and (Y,A) bivariate distributions of the first equating situation are summarized in Table 1. 

The (X,A) and (Y,A) bivariate distributions of the second equating situation are 
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summarized in Table 2. The tests and anchors were both scored as rounded formula 

scores, meaning that each test and anchor score was computed by subtracting a portion of 

examinees’ incorrect responses from their total number of correct responses and then 

rounded. The rounded formula-scoring produced distributions with complex structures 

(described below). 

Table 1 

Descriptive Statistics for Two of the Bivariate (Test, Anchor) Distributions Comprising 

the First Equating Situation 

 New form population  Old form population 

 X A  Y A 

Test score range -10 to 39 -7 to 26  -12 to 49 -7 to 26 

Mean 13.633 8.382  24.402 12.438 

Standard deviation 9.622 6.530  10.163 -0.088 

Skewness 0.311 0.370  -0.533 -0.602 

Kurtosis -0.672 -0.544    

Correlation 0.968  0.955 

Original sample sizes 440,102  198,094 

Table 2 

Descriptive Statistics for Two of the Bivariate (Test, Anchor) Distributions Comprising 

the Second Equating Situation 

 New form population  Old form population 

X A Y A 

Test score range -10 to 39 -7 to 26  -12 to 47 -7 to 26 

Mean 18.838 11.983  23.747 13.039 

Standard deviation 8.908 5.847  9.850 5.703 

Skewness 0.044 0.110  -0.027 -0.016 

Kurtosis -0.697 -0.583  -0.617 -0.582 

Correlation 0.964  0.953 

Original sample sizes 169,333  193,605 
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Loglinear models that closely fit the raw bivariate distributions were used as 

population distributions for the study. The loglinear models allowed for the study of the 

pseudo Bayes estimation with respect to s  values based on the "true" population model 

and also with respect to varying degrees of inadequacy (to be described). The close fits of 

the loglinear models to the original datasets meant that the estimation results from the 

simulation would be applicable to realistic test score distributions and equating situations. 

The parameterization of the loglinear model used as the bivariate (test, anchor) 

population distributions was the same for both of the (X,A) distributions and for both of 

the (Y,A) distributions whose summary statistics are shown in Tables 1 and 2. For an 

(X,A) bivariate distribution, this loglinear model can be expressed as 

6 6 6 6 2 2

0 0 0 0 0 0

log ( )

( ) ( ), , , , ,
D E F G H I

d e f g h i

se jk

f gd e h ix a T j x T k a x ax d j a e k xf f j ag g k xa hi j k
= = = = = =

= = = = = =

=

+ + + +∑ ∑ ∑ ∑ ∑∑β β β β β
. (3) 

In Equation 3, s jk  is the modeled relative frequency of examinees obtaining scores x j  

and ak , where the D and E are the numbers of parameters used to model the univariate 

distributions of X and A (= 6) and H and I are the numbers of parameters used to model 

the joint (X,A) distribution (= 2). D and E values of 6 produce a modeled distribution 

where the first six moments of X and A match those of the raw distribution. H and I 

values of 2 result in a modeled distribution where the conditional means and variances of 

X given A and of A given X match those of the raw distribution. 

The 
6

0
( ),

F

f

fT j xxf f j
=

=
∑ β  and 

6

0
( ),

G

g

gT k aag g k
=

=
∑ β  terms in Equation 3 model score-

specific structures in the marginal distributions of X and A that are due to the rounded 

formula-scoring of X and A. Specifically, when X and A are formula-scored such that 

portions of incorrect answers on X and A are subtracted from the totals of correct 

responses, the marginal distributions of X and A contain abnormally low frequencies that 

occur at fixed score intervals. The ( )T j  and ( )T k  terms in Equation 3 are indicator 

functions set to 1 for the X and A scores with abnormally low frequencies and set to 0 



7 

otherwise. The result of using product terms ( ) fT j x j  and ( ) gT k ak  is that the total sample 

size and the first 6 moments of the distributions of abnormally-low frequencies of X and 

A in the modeled distribution will match those of the raw distribution.  

Figures 1–5 plot the marginal and bivariate population distributions for the 

modeled (X,A) distribution used in the first equating example. The marginal distributions 

of X and A from this bivariate distribution are shown in Figures 1 and 2. To illustrate the 

joint (X,A) distribution, the conditional means, standard deviations and skews of X given 

A are plotted in Figures 3–5. These conditional distributions illustrate the complexity of 

bivariate data typically encountered in psychometric testing, where the conditional means 

of X increase nonlinearly with A (Figure 3) and where the conditional standard deviations 

and skews X decrease nonlinearly with A (Figures 4–5). Figures 1–5 are representative of 

the other bivariate distributions, (Y,A) for the first equating example, and (X,A) and (Y,A) 

for the second equating example. 

Sample Sizes 

One thousand sample datasets were randomly drawn from each of the four 

population distributions, the (X,A) and (Y,A) bivariate distributions for the first and 

second equating examples. Five hundred datasets were drawn for a sample size of 1,000 

and five hundred datasets were drawn for a sample size of 10,000. 

Applications of Pseudo Bayes Estimates 

The pseudo Bayes estimation in Equation 1 was used to estimate the population 

distributions from each of the randomly-drawn sample datasets. Different applications of 

Equation 1 were considered based on varying both the loglinear model ( s ) and the 

weight ( w ) given to r. The s  and w  values were crossed, such that every considered 

loglinear model for s  was paired with every considered weight ( w ). 

Loglinear models for the test score distribution(s). Four bivariate loglinear 

models based on Equation 3 were considered for the s  values in the pseudo Bayes 

estimation Equation 1. (These four models are defined in increasing complexity and 

summarized in Table 3.) 
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Figure 1. Population distribution of X: First equating situation. 

 

Figure 2.  Population distribution of A: First equating situation. 
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Figure 3. Population means of X given A: First equating situation. 

  

Figure 4. Population standard deviation of X given A: First equating situation. 
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Figure 5. Population skewness of X given A: First equating situation. 

Table 3 

Summary of the Four Loglinear Models Used for s in the Pseudo Bayes Estimates 

 Marginal moments 

preserved 

(D & E) 

Fit the score-

specific structures 

(F & G = 6)? 

Conditional 

moments preserved 

(H & I) 

Model 1 0 No 0 

Model 2 3 No 1 

Model 3 6 No 1 

Model 4a 6 Yes 2 

a Population model. 
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• Model 1: A revised Equation 3 with D = E = F = G = H = I = 0, the loglinear 

model that corresponds to the uniform and independence distributions used in 

the early proposals for pseudo Bayes estimation (Bishop et al., 1975; Fienberg 

& Holland, 1973) and the psychometric practice of averaging data with small 

constants (Hanson, 1990; Kolen & Brennan, 2004). 

• Model 2: A revised Equation 3 with D = E = 3, F = G = 0 and H = I = 1, the 

loglinear model prior research has suggested contains the minimal univariate 

and bivariate parameterizations to produce acceptably accurate equipercentile 

equating functions (Moses & Holland, 2007, 2008). 

• Model 3: A revised Equation 3 with D = E = 6, F = G = 0 and H = I = 1, the 

loglinear model used operationally by the testing program providing the data. 

• Model 4: The actual Equation 3 with D = E = F = G = 6 and H = I = 2, the 

population loglinear model. 

Weights for the raw probabilities (w). The following w  values were considered 

for the pseudo Bayes estimates from each random sample fit with each considered 

loglinear model, w =  1, 0.75, 0.50, 0.25, and 0. The data-adaptive w  value suggested in 

Fienberg and Holland (1973) and shown in Equation 2 was also considered, so there were 

six w  values in total that were considered. 

Simulation 

To review the simulation, 500 random samples of size 1,000 and 10,000 were 

drawn from each of the four bivariate population distributions. The population 

probabilities were estimated in each random sample by using pseudo Bayes estimation 

Equation 1 with a range of loglinear models for s  and a range of weights ( w ). 

Equipercentile equating of samples’ new test to the old test was also conducted across the 

new (X,A) and old (Y,A) bivariate distribution samples from the two equation situations 

shown in Tables 1 and 2, based on the pseudo Bayes probability estimates. The 

accuracies of the probability estimates and equipercentile equating functions were 

assessed by averaging the squared deviations of the sample estimates from the population 

values for all of the random samples drawn in the simulation. 
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Accuracy measure for probability estimates. The extent to which the pseudo 

Bayes estimates approximated the population distributions was evaluated in terms of root 

mean squared error, 

( )
500 2

, , , ,
1

, , , 500

V

Distribution N w s v Distribution
v

Distribution N w s Distribution

PB p
RMSE p

=

=

−
=

∑
∑

. (4)  

The subscripts of the , , ,Distribution N w sRMSE  in Equation 4 indicate that this criterion was 

computed for each of the four bivariate population distributions (Distribution), for each 

of the two sample sizes (N), and for each combination of w  value and loglinear model ( s

). In Equation 4, the inaccuracies of the pseudo Bayes estimates of each of the p’s was 

summarized as the sum of the squared deviations of all V = 500 samples’ pseudo Bayes 

estimates from p ( ( )
500 2

, , , ,
1

V

Distribution N w s v Distribution
v

PB p
=

=

−∑ ). To obtain a single summary 

measure for the entire bivariate distribution, the squared deviations for each probability 

were averaged with respect to p ( Distributionp∑ ….) and a final square root was taken to 

produce a measure that was on the scale of the p values. 

Accuracy measure for equipercentile equating. The extent to which 

equipercentile equating functions based on the pseudo Bayes estimates approximated the 

first (Table 1) and second (Table 2) population equating functions computed from the 

population (X,A) and (Y,A) bivariate distributions was evaluated in terms of root mean 

squared error, 

( )
500 2

, , , ,  
1

, , ,

( ) ( )
( )

500

=

=

−
=

∑
V

Equating N w s v Population Equating
v

Equating N w s

x x
RMSE x

φ φ

. (5)  

In Equation 5, the subscripts denote one of two equating situations (Equating), one of two 

sample sizes (N), and the pseudo Bayes’ combination of w value (w) and smoothing 

model (s). The ( )xφ  values denote X-to-Y chained equipercentile equating functions at X 

score = x, as in equipercentile equating functions from the X scores to the Y scores across 
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nonequivalent examinee populations using the A scores in the samples to adjust for the 

nonequivalence of the examinee samples (Kolen & Brennan, 2004). Equation 5 shows 

that equating inaccuracy was summarized as the sum of the squared deviations of all V = 

500 samples’ pseudo Bayes chained equating functions from the population chained 

equating function  

( )PopulationEquatingxφ  ( ( )
500 2

, , , ,  
1

( ) ( )
=

=

−∑
V

Equating N w s v Population Equating
v

x xφ φ ). A final square root was 

taken to produce a measure that was on the scale of the ( )xφ  values. 

A single summary measure of Equation 5 was obtained by averaging the squared 

deviations of the equated scores with respect to the marginal distribution of X in the 

population ( ( )Distributionp x∑ ….). A final square root was taken to produce a measure that 

was on the scale of the ( )xφ  values 

2
, , , , , ,( ) ( )Equating N w s Distribution Equating N w sRMSE p x RMSE x= ∑ . (6) 

Results 

Probability Estimation Results 

The probability estimation results are presented in Tables 4–7. Each table shows 

the root mean squared error (RMSE) accuracy values for estimating one of the four 

bivariate population distributions at the two considered sample sizes (1,000 and 10,000), 

using pseudo Bayes estimates based on the six considered w  values (1, 0.75, 0.50, 0.25, 

0 and Equation 2’s data-adaptive w  value), and the four considered loglinear models. 

The implications of sample size, loglinear model and w  value can be observed on the 

accuracy (RMSE) of the pseudo Bayes estimates for all four population distributions. 

Both sample size and the loglinear models had strong overall effects on the RMSE 

values in Tables 4–7. Probability estimation was most accurate (smallest RMSE values) 

for pseudo Bayes estimates based on sample sizes of 10,000 and the population loglinear 

model (Model 4). Probability estimation was least accurate (largest RMSE values) for 

pseudo Bayes estimates based on for sample sizes of 1,000 and the simplest loglinear 

model (Model 1). 
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Table 4 

Root Mean Squared Errors (RMSEs) for Estimating the Bivariate (X,A) Distribution (500 Replications):  

First Equating Situation 

Sample 

size 

Loglinear model w = 1 w = 0.75 w = 0.50 w = 0.25 w = 0  Data-adaptive w 

1,000 Model 1 0.0024 0.0022 0.0029 0.0039 0.0052  0.0022 

 Model 2 0.0024 0.0019 0.0016 0.0016 0.0020  0.0017 

 Model 3 0.0024 0.0019 0.0016 0.0016 0.0019  0.0017 

 Model 4a 0.0024 0.0018 0.0013 0.0008 0.0006  0.0012 

         

10,000 Model 1 0.0008 0.0014 0.0026 0.0039 0.0052  0.0007 

 Model 2 0.0008 0.0008 0.0011 0.0015 0.0020  0.0007 

 Model 3 0.0008 0.0007 0.0010 0.0014 0.0019  0.0007 

 Model 4a 0.0008 0.0006 0.0004 0.0003 0.0002  0.0004 

a Population model. 
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Table 5 

Root Mean Squared Errors (RMSEs) for Estimating the Bivariate (Y,A) Distribution (500 Replications):  

First Equating Situation 

Sample 

size 

Loglinear model w = 1 w = 0.75 w = 0.50 w = 0.25 w = 0  Data-adaptive w 

1,000 Model 1 0.0021 0.0020 0.0025 0.0034 0.0045  0.0019 

 Model 2 0.0021 0.0016 0.0013 0.0012 0.0014  0.0014 

 Model 3 0.0021 0.0016 0.0013 0.0012 0.0014  0.0014 

 Model 4a 0.0021 0.0016 0.0011 0.0007 0.0005  0.0011 

         

10,000 Model 1 0.0007 0.0012 0.0023 0.0034 0.0045  0.0007 

 Model 2 0.0007 0.0006 0.0008 0.0011 0.0014  0.0006 

 Model 3 0.0007 0.0006 0.0008 0.0010 0.0014  0.0006 

 Model 4 a 0.0007 0.0005 0.0004 0.0002 0.0002  0.0004 

a Population model. 
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Table 6 

Root Mean Squared Errors (RMSEs)  for Estimating the Bivariate (X,A) Distribution (500 Replications):  

Second Equating Situation 

Sample 

size 

Loglinear model w = 1 w = 0.75 w = 0.50 w = 0.25 w = 0  Data-adaptive w 

1,000 Model 1 0.0025 0.0024 0.0033 0.0046 0.0061  0.0023 

 Model 2 0.0025 0.0020 0.0017 0.0018 0.0023  0.0019 

 Model 3 0.0025 0.0020 0.0017 0.0018 0.0023  0.0019 

 Model 4 a 0.0025 0.0019 0.0014 0.0009 0.0007  0.0013 

         

10,000 Model 1 0.0008 0.0016 0.0031 0.0046 0.0061  0.0008 

 Model 2 0.0008 0.0008 0.0012 0.0017 0.0022  0.0008 

 Model 3 0.0008 0.0008 0.0012 0.0017 0.0022  0.0008 

 Model 4 a 0.0008 0.0006 0.0004 0.0003 0.0002  0.0004 

a Population model. 
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Table 7 

Root Mean Squared Errors (RMSEs)  for Estimating the Bivariate (Y,A) Distribution (500 Replications):  

Second Equating Situation 

Sample 

size 

Loglinear model w = 1 w = 0.75 w = 0.50 w = 0.25 w = 0  Data-adaptive w 

1,000 Model 1 0.0022 0.0020 0.0026 0.0035 0.0047  0.0020 

 Model 2 0.0022 0.0017 0.0013 0.0012 0.0014  0.0014 

 Model 3 0.0022 0.0017 0.0013 0.0012 0.0014  0.0014 

 Model 4 a 0.0022 0.0017 0.0012 0.0007 0.0005  0.0011 

         

10,000 Model 1 0.0007 0.0013 0.0024 0.0035 0.0047  0.0007 

 Model 2 0.0007 0.0006 0.0008 0.0011 0.0014  0.0006 

 Model 3 0.0007 0.0006 0.0008 0.0010 0.0013  0.0006 

 Model 4 a 0.0007 0.0005 0.0004 0.0002 0.0002  0.0004 
a Population model. 

 



18 

The effect of the value of w  on the accuracy (RMSE) of the pseudo Bayes 

estimates can be understood in terms of the interaction of w  with the loglinear models 

and sample sizes. For Model 1, large w  values produced more accurate pseudo Bayes 

estimates. In contrast, when Model 4 was used, small w  values produced more accurate 

pseudo Bayes estimates. The most accurate probability estimation was achieved when 

using Model 4 with w  values of 0. For loglinear models other than Model 4, sample size 

altered the impact of w  values on probability estimation accuracy, making larger w  

values most useful for large sample sizes and smaller w  values most useful for small 

sample sizes. For example, Tables 4–7 show that with the relatively poor-fitting Model 2, 

w  values of 1 and 0.75 produced the most accurate probability estimates for sample sizes 

of 10,000 while w  values of 0.50 and 0.25 produced the most accurate probability 

estimates for sample sizes of 1,000.  

The rightmost columns of Tables 4–7 allow for the evaluation of data-adaptive w  

values Equation 2 on probability estimation accuracy. For overly simple loglinear models 

(i.e., Models 1 and 2) the data-adaptive w  values produce relatively accurate probability 

estimates compared to other w values. For Model 4 the data-adaptive w  values produce 

probability estimates that were not as accurate as those based on w  values of 0.  

Overall Chained Equipercentile Estimation Results (RMSEs) 

The chained equipercentile estimation results for the first and second equating 

situations are summarized in Tables 8–9. Within each table, the RMSE accuracy values 

are shown for the two considered sample sizes (1,000 and 10,000), the six considered w  

values (1, 0.75, 0.50, 0.25, 0 and Equation 2’s data-adaptive w  value), and the four 

considered loglinear models. 

The equating estimation accuracy results shown in Tables 8 and 9 are similar to 

the probability estimation accuracy results of Tables 4–7 with respect to sample sizes and 

loglinear models. Equating accuracy is higher (smaller RMSE values) when equating is 

conducted with large sample sizes and with the population loglinear models (Model 4). 

Equating accuracy is lower (larger RMSE values) when equating is conducted with small 

sample sizes and with overly simple loglinear models (Model 1). Practically large RMSE 

values (0.5 or greater) indicate overall equating inaccuracy that is large enough to affect  
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Table 8 

Root Mean Squared Errors (RMSEs) for Estimating the X-to-Y Chained Equipercentile Equating Function (500 Replications): 

First Equating Situation 

Sample 

size 

Loglinear model w = 1 w = 0.75 w = 0.50 w = 0.25 w = 0  Data-adaptive w 

1,000 Model 1 0.7394 0.8672 0.9097 0.6954 0.4548  0.7955 

 Model 2 0.7394 0.4318 0.3581 0.3222 0.3329  0.3837 

 Model 3 0.7394 0.4744 0.4279 0.4069 0.4157  0.4429 

 Model 4a 0.7394 0.4939 0.4462 0.4141 0.4037  0.4432 

         

10,000 Model 1 0.2400 0.8185 0.8915 0.6876 0.4548  0.3052 

 Model 2 0.2400 0.1548 0.1621 0.1955 0.2406  0.1636 

 Model 3 0.2400 0.1713 0.1751 0.2026 0.2441  0.1777 

 Model 4a 0.2400 0.1713 0.1520 0.1392 0.1342  0.1509 

a Population model. 
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Table 9 

Root Mean Squared Errors (RMSEs)  for Estimating the X-to-Y Chained Equipercentile Equating Function (500 Replications): 

Second Equating Situation. 

Sample 

size 

Loglinear model w = 1 w = 0.75 w = 0.50 w = 0.25 w = 0  Data-adaptive w 

1,000 Model 1 0.5289 0.4163 0.5478 0.6631 0.7321  0.3856 

 Model 2 0.5289 0.3389 0.2963 0.2887 0.3167  0.3101 

 Model 3 0.5289 0.3628 0.3351 0.3330 0.3556  0.3429 

 Model 4a 0.5289 0.3714 0.3329 0.3079 0.2983  0.3306 

         

10,000 Model 1 0.1575 0.3356 0.5231 0.6582 0.7321  0.1442 

 Model 2 0.1575 0.1287 0.1570 0.2020 0.2557  0.1237 

 Model 3 0.1575 0.1322 0.1577 0.1988 0.2484  0.1269 

 Model 4a 0.1575 0.1189 0.1061 0.0974 0.0940  0.1053 

a Population model. 
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rounded equated scores. The practically large RMSEs in Tables 8 and 9 correspond to 

pseudo Bayes estimates using Model 1, using w values of 1, and applied to sample sizes 

of 1,000. 

The effect of w  values on equating accuracy depends on the sample size and the 

loglinear model. For Model 4, w  values of 0 produce the most accurate equating 

functions. When the loglinear model is simpler than the population model (Models 2 and 

3), w  values in between 0 and 1 produce the most accurate equating functions, with 

larger w  values being preferable for large sample sizes and smaller w  values being 

preferable for small sample sizes. For the simplest loglinear model (Model 1) the effect 

of w  value differed for the first and second equating situations. For the first equating 

situation (Table 8), the use of Model 1 with a w  value of 0 produced relatively accurate 

equating functions. For the second equating situation (Table 9), the use of Model 1 with 

data-adaptive w  values and w  values of 0.75 and 1 produced relatively accurate 

equating functions.  

The data-adaptive w  values had influences on equating accuracy similar to their 

influences on probability estimation accuracy for every loglinear model except Model 1. 

When used with the population loglinear model (Model 4) the data-adaptive w  values 

produced equating functions that were not as accurate as the equating functions based on 

w  values of 0. When used with Models 2 and 3, the data-adaptive w  values produced 

equating functions that were more accurate than those based on most other w  values. For 

Model 1, the data-adaptive w  value produced equating functions that were optimally 

accurate for the second situation (Table 9) but not as accurate as other w  values for the 

first equating situation (Table 8).  

Score-Level Chained Equipercentile Estimation Results (RMSE(x)’s) 

Assessments of the score-level equating accuracies for some of the chained 

equipercentile equating functions were conducted to evaluate the extent to which X-to-Y 

equating accuracy varied across the X scores. Plots of the score-level root mean squared 

error (RMSE(x)) were used to compare various pseudo Bayes estimates. All plots used 

vertical axes on scales of 0 to 2 RMSE(x) units, a range large enough to show most of the 

RMSE(x) results and narrow enough to differentiate the more and less accurate equating 



22 

results. RMSE(x) values so large that they are not visible in the plots correspond to score 

ranges of X where there is expected to be essentially no data in the samples (Figure 1). 

RMSE(x) values of 0.5 or greater may be considered practically large, as these values 

indicate equating inaccuracy that is large enough to affect rounded equated scores. 

Figures 6–9 plot the RMSE(x) values for the four loglinear models based on the 

five w  values (1, 0.75, 0.50, 0.25 and 0) for the first equating situation and sample sizes 

of 1,000. Figure 6 plots the RMSE(x) values for Model 1 and the five w values, 

suggesting as in Tables 8 and 9 that there is no w  value that produces the most accurate 

equating function across all of the X scores. For Models 2 and 3 (Figures 7 and 8), small 

w  values are generally better for equating accuracy, though the w  value that results in 

the most accurate equating results varies across the X scores. Figure 9 shows that for the 

population loglinear model (Model 4), small w  values (0 and 0.25) consistently produce 

the most accurate equating functions and large w  values (1 and 0.75) consistently 

produce the least accurate equating functions across most of the X scores.  

To assess the data-adaptive w  values on score-level equating accuracy, Figures 

10 and 11 compare the score-level RMSE(x) values from using data-adaptive w  values 

with the four loglinear models for the first and second equating situations. The results are 

generally consistent across the two equating situations, showing small differences in the 

RMSE(x) values based on all loglinear models except for Model 1. The RMSE(x) values 

based on Model 1 are visibly worse than those of the other models for almost all of the X 

scores. Although the RMSE(x) values based on Model 1 with data-adaptive w  values 

seem to be better for the second equating situation (Figure 11) than the first (Figure 10), 

they are worse than those based on other loglinear models and data-adaptive w  values 

across most of the X scores for both equating situations. 
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Figure 6. Score-level accuracies of equating (RMSE(x)): First equating situation. 

Sample sizes of 1,000.  Model 1. 

  

Figure 7. Score-level accuracies of equating (RMSE(x)): First equating situation. 

Sample sizes of 1,000. Model 2. 
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Figure 8. Score-level accuracies of equating (RMSE(x)): First equating situation. Sample 

sizes of 1,000. Model 3. 

 

Figure 9. Score-level accuracies of equating (RMSE(x)): First equating situation. Sample 

sizes of 1,000. Model 4. 
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Figure 10. Score-level accuracies of equating (RMSE(x)): First equating situation. Sample 

sizes of 1,000.  All loglinear models with data-adaptive w values. 

 

Figure 11. Score-level accuracies of equating (RMSE(x)): Second equating situation. 

Sample sizes of 1,000. All loglinear models with data-adaptive w values. 
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Discussion 

Difficulties in the estimation of test score distributions and equipercentile equating 

functions occur when raw cell probabilities exhibit sampling fluctuation or are implausibly zero. 

The traditional psychometric practices for addressing these issues are to smooth the raw 

probabilities or to average the raw probabilities with small constants (Hanson, 1990; Hanson et 

al., 1994; Kolen & Brennan, 2004). Pseudo Bayes methods developed in nonpsychometric 

contexts have been shown to estimate population probabilities more accurately than raw and 

modeled probabilities (Agresti, 1990; Bishop et al., 1975; Fienberg & Holland, 1973). The 

accuracy potential of pseudo Bayes estimates for test score distributions and equipercentile 

equating functions was evaluated in this study. The implications of choices for the "pseudo" 

aspects of pseudo Bayes probability estimates were considered, including the implications of 

different weights for producing weighted averages of the raw and modeled probabilities and the 

implications of different loglinear models for the modeled probabilities.  

The overall results of this study showed that the pseudo Bayes applications produced 

estimates of test score probabilities and chained equipercentile equating functions that were 

usually not as accurate as the corresponding estimates from the population loglinear models. This 

study’s results suggest that the practical use of Fienberg and Holland’s (1973) data-adaptive 

weights in the pseudo Bayes estimates is limited, in that the data-adaptive weights appeared to be 

optimal weights of the raw data when the loglinear model was overly simple, but gave too much 

weight to the raw data when the population loglinear model was used. A major implication for 

practice is that under ideal conditions such as large sample sizes and easily modeled test score 

distributions, the most preferable approach to the estimation of test score probabilities and 

chained equipercentile equating functions is to find and use the best possible loglinear model(s) 

rather than other pseudo Bayes applications based on averaging raw and modeled probabilities. 

It is under less than ideal equating situations where pseudo Bayes applications have some 

utility. Specifically, finding the most accurate loglinear model for observed test data is not 

always feasible in practice. Accurate loglinear model selection can require more time than 

typical equating timelines accommodate and larger sample sizes than those that are encountered 

in testing programs’ equating work. Model selection depends not only on adequate sample sizes, 

but also on infrastructure that can support the fit and comparison of complex loglinear models 

such as Equation 3. To the extent that circumstances of equating practice result in less than 
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perfect loglinear models, pseudo Bayes applications can improve estimation accuracy. Pseudo 

Bayes estimates based on data-adaptive weights and the "6-6-1" loglinear model routinely used 

in equating practice can produce probability estimates and chained equipercentile equating 

functions that are more accurate than those obtained from using only the 6-6-1 loglinear models 

when those 6-6-1 loglinear models are known to under-fit the observed data. The pseudo Bayes 

estimates based on data-adaptive weights and the 3-3-1 or 6-6-1 loglinear models have 

accuracies that are similar to the accuracies from using population loglinear models.  

Some concluding statements are warranted for the implications of pseudo Bayes 

estimates based on the simplest uniform and independence models. As suggested in prior pseudo 

Bayes studies (Agresti, 1990; Bishop et al., 1975; Fienberg & Holland, 1973), this study found 

that the pseudo Bayes estimates’ use of uniform and independence models with data-adaptive 

weights results in more accurate probability estimation than the exclusive use of either the raw 

probabilities or the modeled probabilities from the uniform and independence models. In 

equating applications the use of small constants is one common strategy for eliminating raw 

score probabilities of zero when estimating raw equipercentile equating functions (Hanson, 1990; 

Kolen & Brennan, 2004). To the extent that there is interest in evaluating a raw equipercentile 

equating function while also avoiding the difficulties of equipercentile calculations when test 

score probabilities are zero, this study’s results suggest two ways which pseudo Bayes 

applications can improve on the small constants strategy. First, the data-adaptive weights of 

pseudo Bayes estimation can result in relatively accurate pseudo Bayes estimates when small 

constants are averaged with raw data. More importantly, this study’s results suggest that a raw 

equipercentile equating function can be most accurately estimated by averaging probability 

estimates from loglinear models that fit more of the raw data than the uniform and independence 

models that correspond to the small constants strategy. 
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